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A sys tem of equations of nonsymmetr ic  thermoviscoelas t ic i ty  is obtained for  the displacement  
and rotation vectors  with thermal  memory  taken into account. 

Interes t  in the thermomechanics  of a continuous medium, which is distinguished f rom a c lass ica l  medium 
by the more  complex propert ies ,  is observed at this t ime. We speak about models that the account of the mi -  
e ros t ruc tu re  of real  mater ia ls .  The s imples t  of such models is the Cossera t  continuum. A modern vers ion of 
the theory of elast ici ty of a Cossera t  medium is obtained in [ 1, 2]. Later ,  a related theory of thermoelas t ie i ty  
was developed in [3],  and equations for general ized thermeelas t ic i ty  of a Cossera t  medium are  obtained in [4]. 
A fur ther  development of the theory of thermodeformat ion of such a medium requires  taking account of the 
presence  of memory.  

It is known that the equations of motion of a Cossera t  medium have the form 

v . T + p X = p u ;  V - M - - 2 a T + p y  = 1.~, (1) 

where a T is the vector  accompanying the tensor  T. To descr ibe  the deformation we introduce the nonsym-  
metr ic  deformation tensor  y and the bend ing - to r s ion  tensor  ~t, connected to the displacement and rotation 
vec tors  by the following relat ionships 

7 = VU+ t~• z = VO). (2) 

Consideration of the thermal  p rocesses  requires  the introduction of the internal  energy of a mater ia l  volume 
h and the internal entropy of a mater ia l  volume s which are  additive functions of the mass  expressed in t e rms  
of its density: 

h = S pu v; ,I psdv. (3) 
V V 

We introduce the laws of thermodynamics  in the form just  as is done in [5, 6]. The f i r s t  has the form 

K+h--A§ (4) 

where 

A = S ( X ' t l +  Y.~)dV-+ S (n .T . t i+  n.M.0)dO; 
V 0 

Q= J WdV-- f n.qdO; K =  1 v o 2 (pu .h+  d.I./,))dV. 

The second law of thermodynamics  is written thus: 

If the f ree  energy density 

~ > S-~pwdV--S 1-kn.qdO. 
o 0 

(5) 

(6) 

F = H - -  o s ,  (7) 

is introduced into the consideration, then after  simple manipulations the laws of thermodynamics  can be r e -  
duced to the form 
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1"-. ~ + M . .  ~ - -  e e s -  9 F - -  OOS + O= - -  V" q = O; 
(8) 

l..~§ oF_ 1 - -  q . v O ~ 0 .  
0 

It should be noted that the laws (1) and (8) are  sufficiently general  in nature.  The examination of a specific 
medium requires  the ass ignment  of the expression for the free energy. The ass ignment  of a specific fo rm of 
F is substantially the definition of the medium. 

It is assumed in the investigation of v iscoelas t ic  media that the free energy is determined by the h is tory  
of the body deformation.  The introduction of a dependence of the f ree  energy on the h is tory  of the deformation 
can be real ized by different methods. 

In par t icular ,  it can be done thus. If it is said that the funetion f(t) is defined by the his tory of the 
change in the function g (t) in the interval  (to, t) ,  then in a f i rs t  approximation by separat ing the interval  into 
N par ts  it can be said that f is defined by the N arguments  gk: 

f = f ( g ~ ,  -. .  gh . . . .  gN); g h : g ( t 0 + k A t )  At; At--  t - - t o  (9) 
N 

Expanding f in a power ser ies  in gk and limiting ourselves  to an examination of t e rms  not above the second 
order ,  we obtain 

N N N 

f .~ a-t- ~.~ ON--hgh 4- ~.~ ~ CN--h,N--mghgm. (10) 
h:=l h=l m=l 

Continuing the interval  part i t ion process  and passing to the limit, we obtain the following expression 

t t t 

r:~o+ ~ 0o(t-~) i(~)d~ + ~ ~ ~o(t-~, t -  n)eC~)#(n)d~an. (11) 
t o t o t~ 

It is here  understood that 

Co(X, y)=Co(y, x). (12) 

It should be noted that when we speak of the deformation of a medium there  is not always a foundation for 
limiting the h is tory  to some finite lower limit.  Consequently, for general i ty,  the lower l imit  is taken at - ~  in 
many cases .  However, as a rule i t  is neces sa ry  to deal with situations when the body is not subjected to the 
action of external forces  and heat sources  up to a cer ta in  specific time in the solution of specific problems,  
and there are  no s t ra ins  and s t r e s ses .  In this case  it is appropriate  to take this time as the origin. 

And finally, still another r emark .  In considering viscoelast ic  media it is cus tomary  to ext rac t  the global 
and deviator par ts  in the s t ra in  and s t r ess  tensors .  This is related to the fact  that the governing equation, con- 
necting the global par ts  of the s t r e s s  and s t ra in  tensors  for many mater ia ls ,  has the same fo rm as for an 
elastic medium. Without making such an assumption about the proper t ies  of a mater ia l ,  we never theless  sepa-  
ra te  the tensors  under considerat ion into global and deviator parts  

T = LE-q-s M =  JE-q-II; 7 = G E q - O ;  ~ - - W E + s  (13) 

This is convenient for the subsequent investigation of par t icu lar  cases ,  and also permi ts  conservat ion of the 
traditional fo rm of the thermoviseoelas t ic i ty  equations. 

Limiting ourse lves  to the considerat ion of an isot ropic  p o l a r - s y m m e t r i c  medium and taking account  of 
the r emarks  made, we take the following expression for the free energy of a Cosse ra t  thermoviscoelas t ic  
l inear medium 

t t t 

s = .f { -  c, (x) 0 (~} + c,, (x) d (~)} d~+ ~ S { -  B, (z, *} e (~) o (~}+ 
0 0 0 

+ B~ (X, ~) 5 (~) d 01) - -  B3 (Z, 4) 0 (J 5 (~1) + B~ (X, ~) W (r) W (n) + (14) 

~- B5 (%, *) 0 + (~).- 0 + (~l) ~- B6 (Z, 4) O- (T).. O- (•) ~_ B7 (Z, 4) fi+ (T)-. ft + (~) + B8 (X, 4) it- (T).. fi- (71) } d~ldx, 

where 

z = t - - ~ ;  ~ = t--~]. (.15) 

Substituting the expression for the free energy in the dissipation inequality (8), we obtain 
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t 

-- O {pS -- oCt (0) -- 29 ~ {B, (X, 0) 0 (T) + B~ (X, 0)'0 (T)} dr} + 
0 

t I 

o o (16) 
t t 

+ B~(x, 0)t-[(T)} d~} + 6{3L--oC~(O)+o I(B~(x, o) 0(~) --2B~(x, 0)6(~)} d~} +O--{r--2O .f {'~(X, 0)*+(~) + 
o 

+ B6 (Z, 0) * -  (~)} dT} -- oD-- + q. V O ) 0 ,  

where we have introdueed the notation 
~O tO 

+ Bo (X, $) d (T) G (n) -- B3 (Z, $) O (~) d (~l) + Ba (X, $) W (~) W 01) "+ B, (X, $) ~+ (')'" ~+ 0]) + Bn (X, *) r (~)'" ~- 0]) (17) 

+ B, (Z, r t+ (~)" : a + (n) + Bs (X, ~) a-  (1:).. ~ -  (n)} d~ld'~. 

It is easy to see that a co ro l l a ry  of (16) will be the sys tem of governing equations 
t 

s = S{z~ (z) G (~) + 26 (z) 0 (~)} d~.+ C, (o); 
0 

2 ~ 
s = -5-0 ~[~(x)~(~)d~; 

0 
t 

n = 20 ~ {~, (x) a+ (~) + ~ (x) a -  (~)} d~; (18) 
o 

1 P i {--l~ (X) 0 ('0 + 2l~ (X) G(-~)} d~ + 9C~ (0); 
0 

t 

r =-20 ~ {~ (x) *+ (~) + 16 (x) ~-  (~)} a~ 
0 

and the inequality 

where 

1 
--pD-- q.vO~0, (19) 

0 

t~(x) = Bh(X, 0). (20) 

If the internal  entropy is measu red  f rom the level  corresponding to the undeformed state S (0),  then by assum-  
ing 

T[t=o = O, (21) 

we obtain 

C,(0) = 0; Co(0)= 0. (22) 

Now, if it is assumed that the relaxation functions are monotonic, nonnegative, and not growing, in agree- 
ment with the physical representations, then it follows from (22) that 

Ci(x) = 0; C~(x) = O. (23) 

Let  us now use the definition of the s t ra in  and bend ing - to r s ion  tensors  (2), the governing equations (14), and 
le t  us el iminate the s t r e s s  tensor  f rom the equations of motion (1). We consequently obtain a sys tem of equa- 
tions in the displacement  and rota t ion vectors  

! {  1 i 13(X)V(}(x)+2ls(~)VXm(.~)}d.~+.PX=9~; P [l((x)§ - - ' - 3  " (24) 

0 g7 (z) + z8 (z)] v2d ('0 +--6-  [2l~ (x) + 317 (z) - -  % (z)l vv .  & (~) + 2l~ (x) v x h (~) 7 41~ (x) o~(*) a~ + pV = i. ; i .  
0 
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The s y s t e m  of equations obtained should be supplemented by the heat  conduction equation. We take the heat  con-  
duction law in a f o r m  taking account of the p r e s e n c e  of a t he rma l  m e m o r y  

t 

q = - -  S b(z) vO (x) d'~. (25) 
0 

If the expres s ion  for  F is subst i tuted into the equation for  the f i r s t  law of the rmodynamics  (8), then tak-  
ing account  of the governing equations (18), we obtain 

pOS = 9w - -  V" q - -  9 D. (26) 

Let  us introduce the re la t ive  t e m p e r a t u r e  deviation 

t~ = (0 - -  @o) @q'- (27) 

The equations (24) a r e  l inear .  Invar iance  of the equations of motion with r e s p e c t  to the m e a s u r e d  and the 
actual  configurat ions a r e  used in thei r  der ivat ion,  and t e r m s  not higher  than the quadrat ic  a r e  used in the ex-  
p r e s s i o n  for  the f r e e  energy.  There fore ,  (26) mus t  a lso  be l inear ized.  Eliminating the internal  entropy densi ty 
f r o m  (26) by using the governing equation, and the t he rma l  flux vec to r  by using the heat conduction law, by con-  
se rv ing  only l inear  t e r m s  we obtain the heat  conduction equation 

t 

0 

The s y s t e m  (24) and (28) is the comple te  s y s t e m  of the rmovi scoe las t i c i ty  equations of a C o s s e r a t  
medium with t he rma l  m e m o r y  taken into account.  

Let  us examine the following prob lem:  Let  fo rces  X, moments  Y, heat  l ibera t ion  sources  w act  on a body 
bounded by the su r face  O, and let  the following boundary and initial  conditions hold: 

% = Uo q); "[o = .,o (t); % = 
(29) 

uI =o = o; uI =o = o; = o; ,oI,=o = o.  l,=o = o. 

Using the Laplace  t r a n s f o r m ,  we reduce  the s y s t e m  (24) and (28) to the f o r m  

PP + 2ppIBvxo) + 9Y~ pp2~; 
; J  

PP 117 --k/s] V 2~ + -~-127~ -k 3~ - -  9~1 V V ~ q- 29pI6v xu - -  49p~ ~ -~ PY = P zI" ~; (3 O) 

1 z p-Zpbv2O - -  2p20o/~ 0 - -  ~ -  p 13V. u : - -  Oolw. 

C o m p a r i n g  t h e s e  equat ions  with the t h e r m o e l a s t i c i t y  equat ions  for  a C o s s e r a t  m e d i u m  [71, in a L a p l a c e  t r a n s -  
f o r m a t i o n :  

(7 -k e) V ~ + (~ + ? - -  e) VV" ~ + 2~zvxu-- 4r162 -k 97 = p21. ~; (31 ) 

k V ~  - -  p m O o ~ - -  pv V �9 u = - -  O~l  gw,  

we see  that the solution of the s y s t e m  (30) that sa t i s f i es  (29) will ag r ee  with the cor responding  solution of the 
s y s t e m  (31) if  the following change of p a r a m e t e r s  is executed in the l a t t e r  

9 

v-+pp ; (32)  

~-+@Op(~--3TT);  m - +  29p~: k--~p-6. 

There fo re ,  a p rocedu re  for  const ruct ing the solution of the the rmov i scoe la s t i c i ty  boundary value p rob lem 
for  a C o s s e r a t  medium occurs .  F o r  this the known solution of the the rmoe las t i c i ty  p rob lem for  such a medium 
mus t  be used. It  mus t  be subjected to the Laplace  t r a n s f o r m ,  the change of p a r a m e t e r s  (32) mus t  be  pe r fo rmed ,  
and then the or ig inal  mus t  be found. The p r o c e d u r e  elucidated is  an extension of the widely known [8] e l a s t i c -  
v i scoe las t i c  analogy. 
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N O T A T I O N  

T, s t r e s s  force  tensor;  M, moment  s t r e s s  tensor;  u, d i sp lacement  vector ;  w, rotat ion vector ;  X, ex-  
t e rna l  m a s s  force  vector;  Y, ex terna l  m a s s  moment  vector;  p, density; I, t ensor  cha rac te r i z ing  the ine r t i a l  
p rope r t i e s  of the medium during rotation; H, in ternal  energy  density; F, f ree  energy density; S, in ternal  en-  
t ropy density; K, kinetic energy; A, power  of the ex t e rna lmechan ica l  forces ;  Q, power  of the externa l  t h e rma l  
sources ;  q, the rmal  flux vector ;  w, heat  l iberat ion density; | absolute  t empera tu re ;  | initial  t empera tu re ;  
E, unit t ensor ;  a B, vec tor  accompanying the t ensor  B; B +, s y m m e t r i c  pa r t  of the t ensor  B; B-, a n t i s y m m e t r i c  
p a r t o f t h e ( e n s o r  B;T, Laplace t r a n s f o r m  in f. 
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EQUIVALENCE OF CERTAIN TYPES OF 

RHEOLOGICAL EQUATIONS OF STATE FOR 

POLYMER MEDIA 

PART I. GENERAL ANALYSIS 

B. M. Khusid UDC 532.135 

The conditions a r e  es tab l i shed  under  which rheological  re laxat ion  equations and rheologieal  in-  
tegra l  equations will be equivalent.  

According to the c lass i f i ca t ion  p roposed  by C. Truesde l l  and W. Nell [ 1, 2], the theologica l  equations of 
s ta te  for  a f te re f fec t  media  fall  into th ree  groups:  different ial  equations,  re laxat ion (or s t r a in  ra te )  equations,  
and in tegra l  equations. Equations of the different ial  type a r e  appl icable  only to flow with a smal l  Deborah  num-  
ber ,  i .e . ,  to fluids with a re laxa t ion  t ime  much s h o r t e r  than the t ime  sca le  of flow. In o ther  c a se s  one mus t  use  
e i ther  re laxat ion  equations or  in tegra l  equations of s tate.  Many re laxat ion  equations and in tegra l  equations of 
s ta te  have a l ready  been proposed  [4-7] .  As a rule,  they a r e  pa r t ly  based  on mic roscop ic  models  of p o l y m e r  
fluids and  on cer ta in  assumpt ions  regard ing  the motion of the medium.  They also include s eve ra l  p a r a m e t e r s  
which mus t  be evaluated empi r i ca l ly  for  any specif ic  ma te r i a l .  The theological  equations m o r e  or  l e s s  a g r e e  
with exper iments .  According to the bibl iography on this subject ,  however,  none of them adequately d e s c r i b e s  
the rheological  c h a r a c t e r i s t i c s  of var ious  fluids in complex t rans ien t  s t r a in  s ta tes .  This  makes  i t  n e c e s s a r y  to 
t ry  var ious  models  for  a given m a t e r i a l  and then, a f t e r  compar i son  with the exper iment ,  se lec t  the m o s t  ap-  
pl icable  ones. Such a d ive rs i ty  of rheological  equations for  fluids with m e m o r y  impedes  the p r o g r a m m i n g  of 
numer ica l  solution of hydrodynamic  and the rma l  p rob l ems  for  theologica l ly  complex fluids. In the ca se  of r e -  
laxat ion equations of s ta te  one fo rmula te s  the p rob l ems  of hydrodynamics  and heat  t r a n s f e r  in the f o r m  of p a r -  
tial di f ferent ia l  equations, which can be solved by conventional methods of finite d i f ferences .  F o r  in tegra l  
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4, pp. 670-677, Apri l ,  1982. Original  a r t i c l e  submit ted October  10, 1981. 
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