THERMOVISCOELASTICITY EQUATIONS OF A
COSSERAT MEDIUM WITH THERMAL MEMORY

V1. N. Smirnov UDC 539, 376

A system of equations of nonsymmetric thermoviscoelasticity is obtained for the displacement
and rotation vectors with thermal memory taken into account.

Interest in the thermomechanics of a continuous medium, which is distinguished from a classical medium
by the more complex properties, is observed at this time. We speak about models that the acecount of the mi-
crostructure of real materials. The simplest of such models is the Cosserat continuum. A modern version of
the theory of elasticity of a Cosserat medium is obtained in [1, 2]. Later, a related theory of thermoelasticity
was developed in [3], and equations for generalized thermoelasticity of a Cosserat medium are obtained in [4].
A further development of the theory of thermodeformation of such a medium requires taking account of the
presence of memory.

It is known that the equations of motion of a Cosserat medium have the form
v T-+pX=pu; y-M—2a" + oY = 1.0, (1)

where aT is the vector accompanying the tensor T. To describe the deformation we introduce the nonsym-
metric deformation tensor y and the bending—torsion tensor %, connected to the displacement and rotation
vectors by the following relationships

vy=vyu+ oXE; x=vye. (2)

Consideration of the thermal processes requires the introduction of the internal energy of a material volume
h and the internal entropy of a material volume s which are additive functions of the mass expressed in terms
of its density: -

h = [ pHav; s = [ psav. (3)
14 v

We introduce the laws of thermodynamics in the form just as is done in {5, 6]. The first has the form

K+h=A4+4Q, (4)

where
A=[Xa+Y-o)aV-+ [ (n-T-d+n-M @) do;
v (o
(5)
Q= j'wdv_ [n-qdo; Kz—l—j(pil<i1+ o-1.o)dV.
% 0 27
The second law of thermodynamics is written thus:
é}j—l—pde——j-l— n-qdo. (6)
Ve 5 ©

If the free energy density
F=H-—-@8S§, (7)

is introduced into the consideration, then after simple manipulations the laws of thermodynamics can be re-
duced to the form
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T--y+ M- -%—p0S — pF — p0S + pw — y-q = 0;
T-'\;+M~-§c—p®S—~pF_~—é)—q~v®>0.

It should be noted that the laws (1) and (8) are sufficiently general in nature, The examination of a specific
medium requires the assignment of the expression for the free energy. The assignment of a specific form of
F is substantially the definition of the medium,

It is assumed in the investigation of viscoelastic media that the free energy is determined by the history
of the body deformation. The introduction of a dependence of the free energy on the history of the deformation
can be realized by different methods.

In particular, it can be done thus, If it is said that the function f(t) is defined by the history of the
change in the function g (t) in the interval (t;, t), then in a first approximation by separating the interval into
N parts it can be said that f is defined by the N arguments gi:

(9)

f:ﬁ@h~-&p~&x&=§%+hmAtM=—%%l

Expanding f in a power series in g) and limiting ourselves to an examination of terms not above the second
order, we obtain

N N N
frrat 3 buongnt N N N N-mgilm- (10)
h=1 k=1 m=1 .

Continuing the interval partition process and passing to the limit, we obtain the following expression

4 it
F=at [ bt —m) g dr+ | [ olt—r, t—)g(v) g(n)dudn. (11)

[
It is here understood that
¢ (%, y) =¢o{y, x). (12)

It should be noted that when we speak of the deformation of a medium there is not always a foundation for
limiting the history to some finite lower limit, Consequently, for generality, the lower limit is taken at —« in
many cases. However, as a rule it is necessary to deal with situations when the body is not subjected to the
action of external forces and heat sources up to a certain specific time in the solution of specific problems,
and there are no strains and stresses. In thig case it is appropriate to take this time as the origin.

And finally, still another remark, In considering viscoelastic media it is customary to extract the global
and deviator parts in the strain and stress tensors. This is related to the fact that the governing equation, con-
necting the global parts of the stress and strain tensors for many materials, has the same form as for an
elastic medium, Without making such an assumption about the properties of a material, we nevertheless sepa-
rate the tensors under consideration into global and deviator parts

T=LE+T; M=JE+ I, y=GE-+ ®; x=WE 1 Q. (13)

This is convenient for the subsequent investigation of particular cases, and also permits conservation of the
traditional form of the thermoviscoelasticity equations.

Limiting ourselves to the consideration of an isotropic polar-symmetric medium and taking account of
the remarks made, we take the following expression for the free energy of a Cosserat thermoviscoelastic
linear medium

F={~Cmo®m+C6m}drt | [{—Bi(x vO()6m+
0 00

+ By (% V)G @G (M) — Bs(x, $)O ()G (M) + By, WW (MW (m) + (14)

+ By (1, ¥) @ () - O () - Bs(x, ) @7 (1) - @7 (M) By (y, B) (1) Q@ () + Be(x, ¥) (1) - L ()} dndr,
where

A=t—7 Yp=1—1. (15)

Substituting the expression for the free energy in the dissipation inequality (8), we obtain
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. t . -
— 6 {pS—0C,(0)—20 [ {By (x, 0) 6(%) + Bs(x, OYG(m} dir} +
[
t ot
+W{3J~2pf B (%, O)W(T)dt}+9--{[[—2p j{B7(x, 0) Q* (1) + ,
) 3 (16)

. 4 I3 - - -
+ By (1, 0) Q7w dt} + G{BL— 0C, (0) +p [ (Bs(x. 0) € (1) —2B,(x, 0)G (v} dv} + @- - {1‘ 20 f{B5 (% 0) @* (v) +
- 0

. . 1 .
-+ Bs(y, 0) @ ()} dr} —pD— Y q-v6> 0,
where we have introduced the notation

t ¢
D= y—{-cl(x)e(rwc(x)G(w)}dr [ |5 =Bt WO O+
00 .

+ Bt ©)G@®G () — By (1, O ()G () + Bulx, WW @)W (n) +- By (x, $) D* (3)- - D* (1) -+ Bs (x, ) b~ (v)- -~ (n) an
+ Br(n, ) (%) - @ () + Bs (1, ) @ (v) - - 9~ ()} dnd.
It is easy to see that a corollary of (16) will be the system of governing equations
¢
§= j {#() G(¥) + 24 (x) © (v)} du.+- C, (0);
d ,
2t
= ‘—3-“ (j]‘ (X)W(T)d"
I = 2 j {0 @ () 1y () 8- (1) d; 18)
i
L= Lol 60+ 21w e +000)
0
13
I'=2 5 {I; (%) ®F (0) + L (x) B~ ()} dv
0
and the inequality
—pD—%q-v9>0, (19)
where
L (%) = B (%, 0)- (20)

If the internal entropy is measured from the level corresponding to the undeformed state S(0), then by assum-
ing
Tli=o = 0, (21)
we obtain
C(0)=0; C,(0)=0. (22)

Now, if it is assumed that the relaxation functions are monotonic, nonnegative, and not growing, in agree-
ment with the physical representations, then it follows from (22) that

Cy(x) =0; Cy,(x)=0. (23)

Let us now use the definition of the strain and bending—torsion tensors (2), the governing equations (14), and
let us eliminate the stress tensor from the equations of motion (1), We consequently obtain a system of equa-
tions in the displacement and rotation vectors

o [ (Uit -+ o0l v () 5 1260+ 3 00— % (O VY-t (1) — —3- s () VO(0) + 2 )V X () ds +pX = i o0
J ; _

t . - - -
p [ {1004 5 001 %6 03 5= 1200 + 372) — 9 DI V9~ (9) + 2 (0 V>xts ) — 4 1) (0 de 0¥ =15
) ,
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The system of equations obtained should be supplemented by the heat conduction equation, We take the heat con-
duction law in a form taking account of the presence of a thermal memory

¢
4=— {6(x) vO (@) dr. (25)

0
If the expression for F is substituted into the equation for the first law of thermodynamics (8), then tak-
ing account of the governing equations (18), we obtain

p8S = pw—y-q— pD. (26)
Let us introduce the relative temperature deviation
¥ =(0— 8,6y (27)

The equations (24) are linear, Invariance of the equations of motion with respect to the measured and the
actual configurations are used in their derivation, and terms not higher than the quadratic are used in the ex-
pression for the free energy. Therefore, (26) must also be linearized. Eliminating the internal entropy density
from (26) by using the governing equation, and the thermal flux vector by using the heat conduction law, by con-
serving only linear terms we obtain the heat conduction equation

t

[{paavew— o @+ g er' hv-ae)] el dr — o6, (1 @b + 65 (O)V-li(t)) = — 005w, 5,
[} . .

The system (24) and (28) is the complete system of thermoviscoelasticity equations of a Cosserat
medium with thermal memory taken into account,

Let us examine the following problem: Let forces X, moments Y, heat liberation sources w act on a body
bounded by the surface O, and let the following boundary and initial conditions hold:

o=t (t); ofp= (@) 8, ="Do(t);

. . (29)
iy = 0; o = 0; m‘t=u =0; Olmo=0; 9o =0.
Using the Laplace transform, we reduce the system (24) and (28) to the form
[ _ — — — — 1 — - = — —
op [l; + Il vPu - _%p_ 120, + 8l;— 9%l yy - u— ?Pp@olgvﬁ - 2oplsyxe + oX = ppRu;
G+ Tl v + 225, + 8T, — ST vy - 20Ty — dppem + Y = 1 (30)
pp il -+ L] vée + 5 (21, 4- 31, — sl yy - © + 20plyyxu — dpplso + pY = p?l-o;

oot — 20— Loy T e,
Comparing these equations with the thermoelasticity equations for a Cosserat medium | 71, in a Laplace trans-
formation:

(r + ) v+ (A4 p— o) yy-u + 20yxe — vB,y I - pX = ppu;
W+ eveo+E@+yr—evyy-o-+ 2avxﬁ—4a6+pV=<p2]~—a)‘;
ky* — pmyd — pvy-u = — 67 pw,

(31)

we see that the solution of the system (30) that satisfies (29) will agree with the corresponding solution of the
system (31) if the following change of parameters is executed in the latter

- - 2 _ —
w—oply;  a—>pply A 5 PP —3L);
v—*%pﬁs; v oph; e~ oply; (32)
2 o _
B~>—9— op (L, —3l); m—2ppl; k— pb.

Therefore, a procedure for constructing the solution of the thermoviscoelasticity boundary value problem
for a Cosserat medium occurs. For this the known solution of the thermoelasticity problem for such a medium
must be used. If must be subjected to the Laplace transform, the change of parameters (32) must be performed,
and then the original must be found, The procedure elucidated is an extension of the widely known [8] elastic-
viscoelastic analogy.
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NOTATION

T, stress force tensor; M, moment stress tensor; u, displacement vector; w, rotation vector; X, ex-
ternal mass force vector; Y, external mass moment vector; p, density; I, tensor characterizing the inertial
properties of the medium during rotation; H, internal energy density; F, free energy density; S, internal en~
tropy density; K, kinetic energy; A, power of the external mechanical forces; Q, power of the external thermal
sources; ¢, thermal flux vector; w, heat liberation density; ®, absolute temperature; @, initial temperature;
E, unit tensor; aB, vector accompanying the tensor B; B’, symmetric part of the tensor B; B, antisymmetric
part of the tensor B;_f, Laplace transform in f,
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GJQPO‘I

EQUIVALENCE OF CERTAIN TYPES OF
RHEOLOGICAL EQUATIONS OF STATE FOR
POLYMER MEDIA

PART 1. GENERAL ANALYSIS

B. M., Khusid UDC 532,135

The conditions are established under which rheological relaxation equations and rheological in-
tegral equations will be equivalent,

According to the classification proposed by C. Truesdell and W. Noll [1, 21, the rheological equations of
state for aftereffect media fall into three groups: differential equations, relaxation (or strain rate) equations,
and integral equations. Equations of the differential type are applicable only to flow with a small Deborah num-
ber, i.e., to fluids with a relaxation time much shorter than the time scale of flow, In other cases one must use
either relaxation equations or integral equations of state. Many relaxation equations and integral equations of
state have already been proposed [4-7]. As a rule, they are partly based on microscopic models of polymer
fluids ‘and on certain assumptions regarding the motion of the medium. They also include several parameters
which must be evaluated empirically for any specific material, The rheological equations more or less agree
with experiments, According to the bibliography on this subject, however, none of them adequately describes
the rheological characteristics of various fluids in complex transient strain states. This makes it necessary to
try various models for a given material and then, after comparison with the experiment, select the most ap-
plicable ones. Such a diversity of rheological equations for fluids with memory impedes the programming of
numerical solution of hydrodynamic and thermal problems for rheologically complex fluids. In the case of re~
laxation equations of state one formulates the problems of hydrodynamics and heat transfer in the form of par-
tial differential equations, which can be solved by conventional methods of finite differences. For integral
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